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1.      Introduction 

 

 The main goal of the present paper is to find the conditions which guarantee 

the finiteness of the number of discrete eigenvalues located in the below of the 

bottom of the three-particle branch of the essential spectrum of the model operator 

(Hamiltonian) A  in Fock space. The model operator A  is associated with the 

lattice system describing three particles in interactions, without conservation of the 

number of particles. Such systems are naturally occur in the theory of solid-state 

physics [10], quantum field theory [5] and statistical physics [8,9]. Often, the 

number of particles can be arbitrary large as in cases involving photons (see e.g. 

[4]), in other cases, such as scattering of spin waves on defects, scattering massive 

particles and chemical reactions, there are only participants at any given time, 

though their number can be change. Recall that the study of systems describing n  

particles in interaction, without conservation of the number of particles can be 

reduced to the investigation of the spectral properties of self-adjoint operators 

acting in the n -particle cut subspace of the Fock space [5,9,10,16]. The spectral 

properties of such Hamiltonians in Fock space are studied in [6,9,22] for 

continuous case and [3,11,13,14,20] for discrete case. 

The problem of the finiteness of the number of eigenvalues of the systems 

with a fixed number of particles has been studied by many articles. The first 

mathematical result on the finiteness of the discrete spectrum of Schroedinger 

operators for general interactions was obtained by Uchiyama in [17]. Under natural 

assumptions on the potential the essential spectrum of the continuous Schroedinger 

operator cA  coincides with the half-axis );[  , 0 . In [18,21] it was shown 
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that for 0  and a sufficiently rapid decrease of the interactions the discrete 

spectrum of cA  is actually finite. In the case 0  the finiteness of the discrete 

spectrum of cA  with certain decreasing interactions was established in [19]. The 

authors of [1] used the Faddeev and Weinberg type equations and an expansion of 

the Fredholm determinant to prove the finiteness of the number of eigenvalues of 

the three-particle discrete Schroedinger operators lA  with pair contact interactions 

when the corresponding two-particle discrete Schroedinger operators have no 

virtual levels. The Birman-Schwinger principle was used in [7] to prove that the 

discrete spectrum of the operator lA  describing systems of three particles (two 

bosons and the third particle of a different nature) is finite. In all mentioned above 

papers devoted to the finiteness of lattice Hamiltonians, the case of dimension 

three, that is, 3d , have been considered. 

We note that in the continuous case, considered in [9,22], the "two-particle" 

and "three-particle" branches of the continuous spectrum are given by half-lines 

and overlap. In lattice case, in contrast to the continuous case, the "two-particle" 

and "three-particle" branches of the essential spectrum of the model operator A  fill 

finite-length segments and might not overlap. In the present paper we construct a 

symmetric version of the Weinberg type equation for the eigenvectors of A  and it 

is used to prove the finiteness of the number of discrete eigenvalues located in the 

below of the bottom of the three-particle branch of the essential spectrum of A . 

Our method can also be used in the case where the essential spectrum of A  has a 

gap and 3d . 

The organization of the present paper is as follows. Section 1 is an 

introduction to the whole work. In Section 2, the operator matrix A  is described as 

a bounded self-adjoint operator in the direct sum of the zero-, one- and two-particle 

subspaces of the Fock space and the main results are formulated. In Section 3, we 

prove some auxiliary lemmas. In Section 4, we obtain a symmetric version of the 

Weinberg equation for the eigenvectors of A . Section 5 is devoted to the proof of 

the main results. At the end of this section provided an interesting example 

satisfying all technical assumptions. 

We remark that if the diagonal element 22A  of A  is the multiplication 

operator, then this operator was studied in [3]. Here the existence of infinitely 

many eigenvalues (resp. the finiteness of eigenvalues) below the bottom of the 

essential spectrum of A  was proved for the case where the associated Friedrichs 

model has a threshold energy resonance (resp. a threshold eigenvalue). The 

location of the essential spectrum of A  were described in [11,13,20] and its 

structure was studied in [14]. The existence of infinitely many negative eigenvalues 

of A  is proved for the case where the associated Friedrichs model have a zero 

energy resonance and an asymptotics of the form |||log|0 zU  for the number of 

eigenvalues of A  lying below 0z , is obtained in [12]. The conditions for the 
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infiniteness of the number of eigenvalues located inside (in the gap, in the below of 

the bottom) of the essential spectrum of A  is find. 

 Throughout the present paper we adopt the following conventions: Let C , 

R  and Z  be the set of all complex, real and integer numbers, respectively. We 

denote by dT  the d -dimensional torus (the first Brillouin zone, i.e., dual group of 
dZ ), the cube d],(   with appropriately identified sides equipped with its Haar 

measure. The torus dT  will always be considered as an abelian group with respect 

to the addition and multiplication by real numbers regarded as operations on the 

three-dimensional space dR  modulo dZ)2(  . The spectrum, the essential spectrum, 

the discrete and point spectrum of a bounded self-adjoint operator will be denoted 

by )( , )(ess , )(disc  and )(p , respectively. For each 0 , the notation 

}||:{:)( 00   ppTppU d  stands for a  -neighborhood of the point 

dTp 0 . 

 

2.   The model operator and main results 

 

2.1. The model operator. Let 3d  and ))((2
ndTL  be the Hilbert space of 

square integrable (complex) functions defined on ndT )( , 2,1n . Denote by H  

the direct sum of spaces CH :0 , )(: 21
dTLH   and ))((: 2

22
dTLH  , that is, 

210: HHHH  . The spaces 0H , 1H  and 2H  are called zero-, one- and two-

particle subspaces of the Fock space ))(( 2
dTLF  over )(2

dTL , respectively, where 

  ))(())(()(:))(( 2
2

222
ndddd TLTLTLCTLF . 

Let us consider the model operator A  acting in the Hilbert space H  as 



















22
*
12

1211
*
01

0100

0

0

:

AA

AAA

AA

A , 

with the entries ijij HHA : ,  ji  , 2,1,0, ji  defined by 

 
dT

pfpupfAdssfsvfAaffA )()())((,)()(, 111111010000 , 

 
dT

qpfqpwqpfAVVAAdsspfsvpfA ),(),(),)((,,),()())(( 22
0
2221

0
222220212 , 

 
dd TT

dsqsfsvpvqpfVdsspfsvqvqpfV ),()()(),)((,),()()(),)(( 2222221121 . 

Here ii Hf  , 2,1,0i ; a  is a fixed real number, )(u , )(v , )(iv , 

2,1,0i  and ),( w  are real-valued continuous functions on dT  and 2)( dT , 

respectively. The operator )(* jiAij   denotes the adjoint to ijA  and 
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1,0,),()(),)((,)())(( 101
*
1200

*
01  iHfpfqvqpfAfpvpfA ii . 

Under these assumptions the operator A  is bounded and self-adjoint in .H  

          We remark that the operators 01A  and 12A  (resp. *
01A  and *

12A ) are called 

annihilation (resp. creation) operators. In the present paper we consider the case 

where the number of annihilations and creations of the particles of the considering 

system is equal to 1, that is, 0ijA  for all 1||  ji . 

 Notice that [3] the operator A  is associated to the Hamiltonian of a lattice 

system describing three particles in interaction, without conservation of the number 

of particles and the operator 22A  is associated to a system of three quantum 

particles on the d -dimensional lattice that interact via nonlocal pair potentials [2].  

Set ),(:),(1 qpwqpw   and ),(:),(2 pqwqpw  . To formulate the main 

results of the paper we introduce the operators 0A  and A , 2,1  acting in the 

Hilbert spaces H  and 2H , respectively, as 

2,1,:,

0

0

: 0
22

0
22

*
12

1211
*
01

0100

0 

















  VAA

AA

AAA

AA

A  

and the following families of bounded self-adjoint operators acting in 10 HH   

and 1H  as 

































)(

)(
:)(,

)(

)(
:)(

0
1

*
01

0100

0

1
0
1

*
01

0100

paa

apa
pa

vpaa

apa
pa  

and  vpapa  )(:)( 0 , 2,1 , respectively, where 


dT

dssfsvfafpufpa )()(,)()( 101010000 , 

 
dT

dssfsvqvqfvqfqpwqfpa 2,1,)()()())((),(),())()(( 1111
0  . 

We recall that the operator )(pa  is called molecular-resonance model and 

it is associated with the Hamiltonian of the system consisting of at most two 

particles on the d -dimensional lattice, interacting via both a nonlocal potential, 

and creation and annihilation operators. 

In [14] it was shown that for any dTp  the operator )(pa  has at most 

three eigenvalues. 

Set 

),(max:),,(min:
,,

qpwMqpwm
dd

TqpTqp 
 . 

The following theorem describes the location of the essential spectrum of 

the operator A  by the spectrum of the families )(pa  and )(2 pa  of the generalized 

Friedrichs models [20]. 
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Theorem 2.1. For the essential spectrum of A  the following equality holds 

                 ))}(())(({:],,[)( 2 papaMmA discdisc
Tp

ess d
 


.         (1) 

Moreover, the set )(Aess  is a union of at most five bounded closed intervals. 

The subsets   and ],[ Mm  are called two-particle and three-particle 

branches of the essential spectrum of A , respectively. 

2.2.  Main assumptions. Let dT )2,0(0   be a fixed element. 

Assumption 2.2. For   ,1,0,  the function )(v  is 0T -periodic and )(v  

satisfies the condition 

                                             
dT

dssgsv 0)()( ,                                                (2) 

for any 0T  -periodic function )(2
dTLg . 

Assumption 2.3. (i) The function ),( w  is 0T -periodic on each variable p  and q , 

that is, ),(),(),( 00 qpwTqpwqTpw   for all dTqp , ; 

(ii) The function ),( w  has the non-degenerate minimum at the points 

2)(),( d
ii Tqp  , ni ,...,1 ,  n1 . All third order partial derivatives of the 

functions )(u  and ),( w  are continuous on dT  and 2)( dT , respectively. 

Under the Assumption 2.2 and the part (i) of Assumption 2.3 the discrete 

spectrum of )(pa  coincides (see Lemma 3.1 below) with the union of discrete 

spectra of the operators )(0 pa  and )(1 pa . It follows from the definition of the 

operator )(pa , 1,0  that its structure is simpler than that of )(pa . Using the 

Weyl theorem one can easily show that 

)](),([))(())(())(( 1110 pMpmpapapa essessess   , 

)](),([))(( 222 pMpmpaess  , 

where the numbers )(pm  and )(pM  are defined by 

2,1),,(max:)(),,(min:)( 


 qpwpMqpwpm
dd

TqTq
. 

For any fixed dTp , we define the analytic functions in the domains 

)](),([\ 11 pMpmC  and )](),([\ 22 pMpmC  by 








dd TT zspw

dssv
zp

zspw

dssv
zpuzp

),(

)(
1:);(,

),(

)(
)(:);(

1

2
1

1

1

2
0

0  

and 





dT zspw

dssv
zp

),(

)(
1:);(

2

2
2

2 , 

respectively. For 2,1,0  the function );(  p  is called the Fredholm 

determinant associated with the operator )(pa . 
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From now on we always assume that 2,1,0 . Since the function ),( w  

has the non-degenerate minimum at the points 2)(),( d
ii Tqp  , ni ,...,1  and the 

function )(v  is a continuous on dT , for any dTp  the integral 


dT mspw

dssv

),(

)(2


 

is positive and finite. Then the Lebesgue dominated convergence theorem yields 

);(lim);( mpmp
ipp

i  


, ni ,...,1 , and hence the function );( m  is a 

continuous on dT . 

Note that using the fact [2,3] 

))((:],,[)( paMmA disc
Tp

ess d  

  

together with Assumption 2.2 and part (i) of Assumption 2.3 the equality (2.1) can 

be written as 

)()()()( 210 AAAA essessessess   .                        (3)   

It was shown in [2,3] that if 0);(min 


mp
dTp

 , then  ],( m . Assuming 

0);(min 


mp
dTp

 , we introduce the following numbers 

]},(max{:]},,(min{: )(
max

)(
min mEmE  




  . 

The following theorem [2,3] describes the structure of the part of the 

essential spectrum of A  located in ],( M . 

Theorem 2.4. Let part (ii) of Assumption 2.3 be fulfilled. 

 (i) If 0);(min 


mp
dTp

 , then 

],[)(],( MmAM ess   ; 

(ii) If 0);(min 


mp
dTp

  and 0);(max 


mp
dTp

 , then 

mEMEAM ess  )(
min

)(
min ],,[)(],( 

 ; 

(iii) If 0);(max 


mp
dTp

 , then 

mEMmEEAM ess  )(
max

)(
max

)(
min ],,[],[)(],( 

 . 

We notice that if Assumptions 2.2 and 2.3 hold, then Theorem 2.4 together 

with the equality (3) describes the structure of the part of the essential spectrum of 

A  located in ],( M . 

If 0);(min 


mp
dTp

 , then from 
 )(

max
)(

min ,EE  it follows that there exist positive 

integers  kn ,  and points     dk

jj

n

ii Tqp 



 11
,  such that 

   



 n

d ppEpTp ,...,0);(: 1
)(

min  ; 
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 k

d qqEpTp ,...,0);(: 1
)(

max  . 

Assumption 2.5. There exist positive numbers C ,   and ]2,0(j , nj ,...,1  

such that 









 njpUpppCEp jj

j ,...,1),(,|||);(| )(
min  , 

and the inequality 0);( )(
min  

 Ep  holds for all },...,{\ 1  n
d ppTp . 

Assumption 2.6. There exist positive numbers K ,   and ]2,0(i , ki ,...,1  

such that 









 kiqUpqpKEp jj

j ,...,1),(,|||);(| )(
max  , 

and the inequality 0);( )(
max  

 Ep  holds for all },...,{\ 1  k
d qqTp . 

 

2.3. Statement of the main results. Here we formulate main results of the paper. 

Theorem 2.7. Let part (i) of Assumption 2.3 be fulfilled. 

(i) If Assumption 2.2 holds with 0  and the function )(2 v  satisfies the 

condition (2), then )()( 0 AA pdisc   . 

(ii) If Assumption 2.2 holds with 1  and in addition, the functions )(u , )(v  are 

0T -periodic, then )()( 22 AA pdisc   . 

Theorem 2.8. Let Assumptions 2.2 and 2.3 be fulfilled. Assume 

( .1) 0);(min 


mp
dTp

 ; 

( .2) 0);(min 


mp
dTp

 , 0);(max 


mp
dTp

  and Assumption 2.5 holds; 

( .3) 0);(max 


mp
dTp

  and Assumptions 2.5, 2.6 hold. 

 If for some }3,2,1{,, kji  the conditions (1. i ), (2. j ) and (3. k ) hold, then 

the operator matrix A  has a finite number of discrete eigenvalues lying on the left 

of m . 

Remark 2.9. The class of functions )(u , )(v , 2,1  and ),( w  satisfying the 

conditions in Theorem 2.8 is nonempty (see Lemma 5.1). 
 

3.   Some auxiliary statements 

 

The following lemma describes the relation between the eigenvalues of the 

operators )(pa  and )(pa , 1,0 . 

Lemma 3.1. Let Assumption 2.2 and part (i) of Assumption 2.3 be fulfilled. For 

any fixed dTp  the number )](),([\)( 11 pMpmCpz   is an eigenvalue of )(pa  

if and only if )(pz  is an eigenvalue of at least one of the operators )(0 pa  and 

)(1 pa . 
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Proof. Let dTp  be fixed. Suppose 1010 ),( HHff   is an eigenvector of the 

operator )(pa  associated with the eigenvalue )](),([\)( 11 pMpmCpz  . Then 0f  

and 1f  satisfy the following system of equations 

 
dT

dssfsvfpzpu 0)()())()(( 100 ; 

               
dT

dssfsvqvqfpzqpwfqv 0)()()()())(),(()( 1111100 .           (4) 

Since for any dTq  the relation 0)(),(1  pzqpw  holds, from the second 

equation of the system (4) for 1f  we have 

                                       
)(),(

)()(
)(

1

001

1
1

pzqpw

fqvqvC
qf

f




 ,                               (5) 

where 

                                               
dT

f dssfsvC )()( 111
.                                          (6) 

Substituting the expression (5) for 1f  into the first equation of the system 

(4) and the equality (6), we conclude that the system of equations (4) has a 

nontrivial solution if and only if the system of equations 

0
)(),(

)()(
))(;(

1

1

10
00 


  f

T

C
pzspw

dssvsv
fpzp

d

; 

0))(;(
)(),(

)()(
110

1

10 


 f
T

Cpzpf
pzspw

dssvsv

d

 

has a nontrivial solution 2
0 ),(

1
CCf f  , i.e. if the condition 

0
)(),(

)()(
))(;())(;(

2

1

10
10 












 

dT pzspw

dssvsv
pzppzp  

is satisfied. 

 By part (i) of Assumption 2.3 for any fixed dTp  the function 

)())(),(( 2
1

1
dTLpzpw    is 0T -periodic. Applying Assumption 2.2 we obtain 

0
)(),(

)()(

1

10 



dT pzspw

dssvsv
. 

If we set 0)(1 qv  in the operator )(pa , then )()( 0 papa  ; in this case the 

number )](),([\)( 11 pMpmCpz   is an eigenvalue of )(0 pa  if and only if 

0))(;(0  pzp . Similarly one can show that the number 

)](),([\)( 11 pMpmCpz   is an eigenvalue of )(1 pa  if and only if 0))(;(1  pzp . 

The lemma is proved. 
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Lemma 3.2. Let 0);(min 


mp
dTp

 . Then there exists a positive number 1C  such 

that the inequality 1);( Czp   holds for all dTp  and mz  . 

Proof. Since for any dTp  the function );(  p  is monotonically decreasing in 

];( m , we have 

0);(min);();( 


mpmpzp
dTp

  

for all dTp  and mz  . Now setting );(min:1 mpC
dTp




 we complete the proof 

of lemma.  

Lemma 3.3. If Assumption 2.5 resp. 2.6 holds, then for any 0  there exist the 

positive numbers )(1 C  and )(2 C  such that 

 (i) )();( 1
)(

min 
 CEp   for all )(\

1
i

n

i

d pUTp 




 ; 

resp. 

(ii) )(|);(| 2
)(

max 
 CEp   for all )(\

1
j

k

j

d qUTp 




 . 

Proof. Let Assumption 2.5 be fulfilled. Then the inequality 0);( )(
min  

 Ep  holds 

for any },...,{\ 1  n
d ppTp . Since for any 0  the set )(\

1
i

n

i

d pUT 




  is 

compact and );( )(
min


 E  is the positive continuous function on this set, there exists 

the number 0)(1 C  such that the assertion (i) of lemma holds. Proof of assertion 

(ii) is similar. 

Lemma 3.4. Let part (ii) of Assumption 2.3 be fulfilled. Then there exist positive 

numbers 321 ,, CCC  and   such that the following inequalities hold 

(i) )|||(|),()|||(| 22
2

22
1 iiii qqppCmqpwqqppC   for all 

)()(),( ii qUpUqp   ; 

(ii) 3),( Cmqpw   for all ))()((),(
1

ii

n

i
qUpUqp  


. 

Proof. By part (ii) of Assumption 2.3 the all third order partial derivatives of ),( w  

are continuous on 2)( dT  and it has the non-degenerate minimum at the points 

2)(),( d
ii Tqp  , ni ,...,1 . Then by the Hadamard lemma [23] there exists a  -

neighborhood of the point 2)(),( d
ii Tqp   such that the following decomposition 

holds 

 )),(()),((2)),((
2

1
),( )(

3
)(

2
)(

1 ii
i

ii
i

ii
i qqqqWqqppWppppWmqpw   
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)()(),(

,)()(),(
3|||| 1

)()()()()(

ii

ls

d

k

lk

i

ksk

i

ki

sl

qUpUqp

qqppqpH kk

 

  
   

where ni ,...,1  and 
d

kj

kj

iii

d

kj

kj

iii

d

kj

kj

iii

qq

qpw
W

qp

qpw
W

pp

qpw
W

1,

)()(

2
)(

3

1,

)()(

2
)(

2

1,

)()(

2
)(

1

),(
:,

),(
:,

),(
:
























































 , 

djdlsssslllsss jjddd ,...,1},,...,1,0{,,...||),,...,(),,...,( 111  , 

and ),()( i
slH  with 3||||  ls  are continuous functions in )()( ii qUpU   . 

Therefore, there exist positive numbers 321 ,, CCC  such that (i) and (ii) hold true. 

 

4.   The Weinberg type system of integral equations 

 

In this section we derive an analogue of the Weinberg type system of 

integral equations for the eigenvectors, corresponding to the eigenvalues of A , 

lying on the left of m . 

Let )(Aess  be the lower bound of the essential spectrum of A . It is clear 

that 0),(  zp  for all dTp  and ))(,( Az ess ; if 0);(max 


mp
dTp

 , then 

0),(  zp  for all dTp  and ),( )(
max mEz  . So )),(( zpsign   depends on the 

location of )(\),( Amz ess  and does not depend on dTp . For 

)(\),( Amz ess  we set )),((:)( zpsignz   . 

Let for any )(\),( Amz ess  the operator )(zW  act in the Hilbert  space H  as 

a 33  operator matrix with entries ijij HHzW :)( , 2,1,0, ji  defined by 





dT zsz

dssgsv
gzWgazgzW

),()(

)()(
)(,)1()(

00

1
1010000


; 

0)(,
),()(

)()(
))()((,0)( 11

00

00
01002 


 zW

zpz

gpvz
pgzWzW




; 

 



d dT T ztpwztz

dsdttsgsvtv

zpz

pvz
pgzW

)),((),()(

),()()(

),()(

)()(
))()((

22

220

00

20
212




; 

zqpw

pgzWqv
qpgzW




),(

))()()((
),)()(( 0100

020 ; 





dT zqswzsz

dssgsv

zqzzqpw

pvqvz
qpgzW

)),((),()(

)()(

),()()),((

)()()(
),)()((

00

12

22

202
121




; 
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d dT T ztpwztz

dsdttsgsvtv

zpzzqpw

pvqvz
qpgzW

)),((),()(

),()()(

),()()),((

)()()(
),)()((

22

221

11

211
222




 

zqpw

pgzWqv

zqswzsz

dsdttsgsvtv

zqzzqpw

pvqvz

d dT T 



  

),(

))()()((

)),((),()(

),()()(

),()()),((

)()()( 2120

11

221

22

212




, 

where jj Hg  , 2,1,0j . 

We have the following lemma. 

Lemma 4.1. Let Assumption 2.2 and part (i) of Assumption 2.3 be fulfilled. If 

Hf   is an eigenvector corresponding to the eigenvalue )(\),( Amz ess  of 

A , then f  satisfies the Weinberg equation ffzW )( . 

Proof. Let )(\),( Amz ess  be an eigenvalue of the operator A  and 

Hffff  ),,( 210  be the corresponding eigenvector. Then 0f , 1f   and 2f  satisfy 

the system of equations 

0)( 101000  fAfzA ; 

                  0))(())()(())(( 212111010  pfApfzApfA ;                  (7) 

0),)((),)((),)()((),)(( 22212
0
22121  qpfVqpfVqpfzAqpfA . 

Since mz  , from the third equation of the system (4.1) for 2f  we have 

                 
zqpw

pfqv

zqpw

qpvpqv
qpf









),(

)()(

),(

)()()()(
),( 102211

2


,                   (8) 

where 

                                             
dT

dsspfsvp ),()()( 211 ,                                   (9) 

                                           
dT

dspsfsvp ),()()( 212 .                                    (10)   

Substituting the expression (8) for 2f  into the second equation of the 

system (7) and the equalities (9), (10) and using Assumptions 2.2, 2.3, we obtain 


dT

dssfsvfazf )()()1( 100 ; 

                         



dT zspw

dsssv
pvfpvpfzp

),(

)()(
)()()(),( 20

2010


;               (11) 





dT zspw

dsssv
pvpzp

),(

)()(
)()(),( 21

211


 ; 








dd TT zpsw

dsssv
pv

zpsw

dssfsv
pvpzp

),(

)()(
)(

),(

)()(
)()(),( 12

1
12

022


 . 

 

It is clear that the inequality 0),()(  zpz   holds for all )(\),( Amz ess   

and dTp . Therefore, the system of equations (11) has a nontrivial solution if and 

only if the following system of equations 
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1010000 )()( fzWfzWf  ; 





dT zspwzsz

dsssv

zpz

pvz
pfzWpf

)),((),()(

)()(

),()(

)()(
))()(()(
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20

00

20
0101








; 





dT zspwzsz

dsssv

zpz

pvz
p

)),((),()(

)()(

),()(

)()(
)(
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21
1








 ; 





dT zpswzsz

dssfsv

zpz

pvz
p

)),((),()(

)()(

),()(

)()(
)(

00

12

22

02
2




  





dT zpswzsz

dsssv

zpz

pvz

)),((),()(

)()(

),()(

)()(

11

12

22

12








 

has a nontrivial solution. 

Substituting the last expressions for 1f  and  , 2,1  into the formula 

(8) and using the equalities (9), (10), we obtain the Weinberg equation ffzW )( . 

 Set 

)(\],1)([:,min:,min: )(

maxmax

)(

minmin AmAEEEE essess 






 . 

Lemma 4.2. Let assumptions in Theorem 2.8 be fulfilled. Then the operator )(zW  

is compact for z  and the operator-valued function )(zW  is continuous in the 

uniform operator topology for z . 

Proof. We will prove the statement of the lemma for the case 0);(max 


mp
dTp

  

with 
)3(

max

)2(

max

)1(

max

)3(

min

)2(

min

)1(

min , EEEEEE  . 

Other cases can be proven in a similar. 

 In this case we have 

mEmEEE  maxmaxminmin ],,[],1[ . 

Let Assumptions 2.5 and 2.6 be fulfilled. For )(\),( Amz ess  denote by 

);,,,( ztsqpW  the kernel of the operator )(22 zW . 

We have the following inequalities 

0),( min  Emzqpw  for all min,, EzTqp d  ; 

02/)(),( max  Emzqpw  for all dTqp , , ]2/)(;[ maxmax EmEz  . 

Then by Assumptions 2.5, 2.6 and Lemma 3.3 the function |);,,,(| zW   can be 

estimated by 
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for minEz    and by 
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for ]2/)(,[ maxmax EmEz  , where )(  is the characteristic function of )0(U . 

 Since 1)( z  for any ),( max mEz  and 0);(max 


mp
dTp

 , we have 

the inequality 0));()((max 


mpz
dTp

  for any ),( max mEz . Therefore, Lemmas 

3.2 and 3.4 imply that the function |);,,,(| zW   can be estimated by 
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qqps
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qtpp

qqpp

qqpp
C

1
2222223
||||

)()(

||||

)()(
1

||||
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for ],2/)[( max mEmz  . 

Using elementary inequality 

0)()()(,
)()()(

1

)(...)(

1 2)3(2)2(2)1(

2)3(2)2(2)1(2)(2)1(






ppp

ppppp d
, 

one can see that the latter three majorant functions are square integrable on 4)( dT  

and hence the operator )(22 zW  is Hilbert Schmidt for any 

],[],( maxmin mEEz  . 

A similar argument shows that the operators )(12 zW  and )(21 zW  are also 

Hilbert Schmidt for any z . 

 For any )(\),( Amz ess  the kernel function of )(zWij , 2,1, ji  is 

continuous on its domain. Therefore the continuity of the operator-valued functions 

)(zWij , 2,1, ji  in the uniform operator topology for z  follows from 

Lebesgue's dominated convergence theorem. 

Since for all z  the operators )(00 zW , )(01 zW , )(10 zW  and )(20 zW  are of 

rank 1 and continuous in the uniform operator topology for z  one concludes 

that )(zW  is compact for z  and the operator-valued function )(zW  is 

continuous in the uniform operator topology for z . 

 

5.     Proof of the main results 

 

In this section we prove Theorems 2.7 and 2.8. 
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Proof of Theorem 2.7. First we prove part (ii). Let 1 . If )(\ 221 ACz ess  is 

an eigenvalue of the operator 22A  and 22 Hf   is the corresponding eigenfunction, 

then 2f  satisfies the equation 

0),()()(),()()(),()),(( 22221121  
dd TT

dsqsfsvpvdsspfsvqvqpfzqpw .      (12)     

Since ],[1 Mmz  , from the equation (5.1) for 2f  we have 

                             
1

2211
2

),(

)()()()(
),(

zqpw

qpvpqv
qpf







,                                (13) 

where the function )(1   and )(2   are defined by (9) and (10), respectively. 

Substituting the expression (13) for 2f  into the equalities (9) and (10), we 

obtain 





dT zspw

dsssv
pvpzp

1

21
2111

),(

)()(
)()(),(


 ; 





dT zpsw

dsssv
pvpzp

1

12
1212

),(

)()(
)()(),(


 . 

Since )( 221 Az ess  the inequality 0),( 1  zp , 2,1  holds for all dTp . 

From the last two equations we have 





dT zspw

dsssv

zp

pv
p

1

21

11

2
1

),(

)()(

),(

)(
)(


 ; 





dT zpsw

dsssv

zp

pv
p

1

12

12

1
2

),(

)()(

),(

)(
)(


 . 

For  2,1  the functions )(v  and ),( qw  , dTq  are 0T -periodic and hence 

the function )(  is also 0T -periodic. Therefore, for any fixed dTp  the 

function ),(2 pf  defined by (13), is 0T -periodic. Hence this function satisfies the 

condition (2.2), that is, 0212 fA . So the number )( 221 Az disc  is an eigenvalue 

of A  and associated eigenvector has form Hff  ),0,0( 2 . Therefore, 

)()( 22 AA pdisc   . 

  Now we prove part (i). Let 0 . If )( 00 Az disc  and Hgggg  ),,( 210  

is the eigenfunction associated with the discrete eigenvalue 0z  of 0A , then similar 

analysis shows that 02 gV , 2,1 , which guarantee that the number 

)( 22 Az disc  is an eigenvalue of A  with the same eigenvector Hg , that is, 

)()( 0 AA pdisc   . Theorem 2.7 is proved. 

Proof of Theorem 2.8. We prove the finiteness of the number of discrete 

eigenvalues located on the left of m  for the case, when 0);(max 


mp
dTp

 . Other 
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cases can be proven similarly. Suppose that the operator A  has an infinite number 

of discrete eigenvalues   ),( max mEE
Nkk 


. Then three cases are possible: 

(i) mEk
k




lim ; 

(ii) maxlim EEk
k




; 

(iii) there exist      
NkkNkkNkk EEE


''' ,  such that mEk

k




'lim  and 

max
''lim EEk

k



. 

Let us consider the case (iii). For each Nk  we denote by Hk 
'  and 

Hk 
''  the orthonormalized eigenvectors corresponding to the eigenvalues '

kE  

and ''
kE , respectively. Then it follows from Lemma 4.1 that ''' )( kkk EW    and 

'''''' )( kkk EW    for any Nk . By virtue of Lemma 4.2 the operators )( maxEW , 

)(mW  are compact and 0||)()(|| max  EWzW  and 0||)()(||  mWzW  as 

0max Ez  and 0mz , respectively. Therefore, 

0||)(||||))()((||||)(||||||1 '
max

'
max

''''  kkkkkk EWEWEWEW  ; 

0||)(||||))()((||||)(||||||1 ''''''''''''  kkkkkk mWmWEWEW   

as k . This contradiction implies that the points maxEz   and mz   can not 

be limit points of the set of discrete eigenvalues of A  belonging to the interval 

),( max mE . Similar arguments show that other edges of   are also cannot be 

accumulation point for the set of discrete eigenvalues of A  smaller than m . 

The following example shows that the class of functions )(u , )(v , 

2,1  and ),( w  satisfying the conditions of Theorem 2.8 is nonempty. 

Lemma 5.1. Let 

,1,0),(ˆ:)(,)cos(:)(ˆ,)2cos(:)(ˆ
1

)(
11

1

)(
00  



  pvpvpcpvpcpv
d

i

i
i

d

i

i
i





d

i

ippqpqpwpu
1

)( ))2cos(1()(),()(),(,1)(  , 

where 0 ; ic , 1,0 , di ,...,1  are arbitrary real numbers. 

Set 
1

2
)1(

1
2

)0(

)(6

)(ˆ
:,

)(

)(ˆ
:
































 

dd TT s

dssv

s

dssv





 




 . 

Then the functions )(u , )(v , 2,1  and ),( w  are satisfy Assumptions 

2.2, 2.3, 2.5, 2.6. Moreover, 

(i) if )0(0    , then 0);(max 


mp
dTp

 ; 
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 (ii) if )1()0(
   , then 0);(min 


mp

dTp
  and 0);(max 


mp

dTp
 ; 

 (iii) if )1(
   , then 0);(max 


mp

dTp
 . 

Proof. First we recall that for dTT  ),...,(:0   the function ),( w  is 0T -periodic 

on each variable p  and q . Let the function )(2
dTLg  as in Assumption 2.2. 

Then we have 

dssgsvdsTsgTsvdssgsv
ddd TTT

)()()()()()( 10011   , 

which yields the equality (2.2), that is, Assumption 2.2 holds with 0  and 

1 . 

 We introduce the following subset of dT : 

},...,1},,0{:),...,({: )()()1( dkpTppp kdd   . 

From the definition of ),( w  it follows that this function has zero non-

degenerate minimum at the points of   and it satisfy all conditions of 

Assumption 2.3.  

The assertions (i)-(iii) directly follows from the definition of the numbers 
)0(

  and )0(
 . 

Let )1()0(
   . We prove that the function ),( )(

min


 E  has the non-

degenerate minimum at the points of  . Simple calculations show that for any 

fixed 'p  the inequality ),'(),( )(
min

)(
min





 EpEp   holds for all  \dTp . 

 Since )0,()(
min E , it is clear that the function ),( )(

min


 E  is twice 

continuously differentiable in dT . Moreover, from the equalities 









dT

k

kk Esp

dssv
p

pp

Ep
2)(

min

2
)(

)()(

)(
min

2

))()((

)(ˆ
)2cos(4

),(









  

 



dT

k dk
Esp

dssv
p ,...,1,

))()((

)(ˆ
))2(sin(8

3)(
min

2
2)(







 ; 

 







dT

lk

lk
dlklk

Esp

dssv
pp

pp

Ep
,...,1,,,

))()((

)(ˆ
)2sin()2sin(8

),(
3)(

min

2
)()(

)()(

)(
min

2










  

we get 

dlklk
pp

Ep

pp

Ep
lkkk

,...,1,,,0
),'(

,0
),'(

)()(

)(
min

2

)()(

)(
min

2









 



  

for any 'p . 

Using these facts, one may verify that the matrix of the second order partial 

derivatives of the function ),( )(
min


 E  at the points of   are positive definite. 

Thus the function ),( )(
min


 E  has the non-degenerate minimum at the points of  . 
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Since the number of points of   is equal to d2  for convenience we numerate the 

points of   as dpp
21,..., . Then the equality 0),( )(

min  
 Epi , di 2,...,1  implies 

that there exist the numbers 0  and 0C  such that 
d

ii ipUpppCEp 2,...,1),(,|||),(| 2)(
min  


 , 

that is, Assumption 2.5 holds with dn 2 , ii pp   and 2i  for di 2,...,1 . 

In the case )1(
    one can similarly show that there exist the numbers 

0  and 0K  such that 

d
ii ipUpppKEp 2,...,1),(,|||),(| 2)(

max  


 , 

that is, Assumption 2.6 holds with dk 2 , jj pq   and 2j  for dj 2,...,1 .  
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Fok fəzasında Hamiltonianın məxsusi ədədləri sayının məhdudluğu 

 

Tulkin Rəsulov 

 

XÜLASƏ 

 
D-ölçülü qəfəsdə hissəciklərin sayının saxlanılmadığı halda 3 hissəcikli qarşılıqlı 

təsiri təsvir edən,  Hamiltonian ilə bağlı olan operator modelinə baxılır.  Biz A 

operatorunun əsas spektrinin dəqiq yerləşməsi və strukturu üçün üç ümumiləşdirilmiş 

Fridrix modelini  veririk. Biz diskret spektrin sonluluğu üçün kafi şərt deyil, A 

operatorunun məxsusi vektorları üçün Vaynberq tənliyinin simmetrik verisyasını qururuq.  

           Açar sözlər: Hamiltonian, Fock fəzası, anniqilyasiya və generasiya operator,  

ümumiləşdirilmiş Fridrix modeli, əsas və diskret spektr.  

 

 

Ограниченность  количества собственных значений  

Гамильтониа в пространстве Фока 

 

Tулкин Х. Расулов 

 

РЕЗЮМЕ 

 
            Рассматривается модел оператора связанного  с Гамильтонианом системы 

трех частиц, описывающих взаимодействие, без сохранения числа частиц на d-

мерной решетке. Мы точно описываем расположение и структура существенного 

спектра А  по спектрам трех моделей обобщенных Фридрихсом. Мы получаем 

симметрическую версию уравнения Вайнберга для собственных векторов А, а не 

достаточные условия для конечности дискретного спектра. 

            Ключевые слова: Гамильтониан, пространство Фока, аннигиляция и 

операторы генерации, обобщенная модель Фридрихса, существенные и дискретные 

спектры. 

 

 

  


