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1. Introduction

The main goal of the present paper is to find the conditions which guarantee
the finiteness of the number of discrete eigenvalues located in the below of the
bottom of the three-particle branch of the essential spectrum of the model operator
(Hamiltonian) A in Fock space. The model operator A is associated with the
lattice system describing three particles in interactions, without conservation of the
number of particles. Such systems are naturally occur in the theory of solid-state
physics [10], quantum field theory [5] and statistical physics [8,9]. Often, the
number of particles can be arbitrary large as in cases involving photons (see e.g.
[4]), in other cases, such as scattering of spin waves on defects, scattering massive
particles and chemical reactions, there are only participants at any given time,
though their number can be change. Recall that the study of systems describing n
particles in interaction, without conservation of the number of particles can be
reduced to the investigation of the spectral properties of self-adjoint operators
acting in the n-particle cut subspace of the Fock space [5,9,10,16]. The spectral
properties of such Hamiltonians in Fock space are studied in [6,9,22] for
continuous case and [3,11,13,14,20] for discrete case.

The problem of the finiteness of the number of eigenvalues of the systems
with a fixed number of particles has been studied by many articles. The first
mathematical result on the finiteness of the discrete spectrum of Schroedinger
operators for general interactions was obtained by Uchiyama in [17]. Under natural
assumptions on the potential the essential spectrum of the continuous Schroedinger
operator A, coincides with the half-axis [x;0), x<0. In [18,21] it was shown
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that for k<0 and a sufficiently rapid decrease of the interactions the discrete
spectrum of A, is actually finite. In the case x =0 the finiteness of the discrete

spectrum of A, with certain decreasing interactions was established in [19]. The

authors of [1] used the Faddeev and Weinberg type equations and an expansion of
the Fredholm determinant to prove the finiteness of the number of eigenvalues of
the three-particle discrete Schroedinger operators A, with pair contact interactions

when the corresponding two-particle discrete Schroedinger operators have no
virtual levels. The Birman-Schwinger principle was used in [7] to prove that the
discrete spectrum of the operator A describing systems of three particles (two

bosons and the third particle of a different nature) is finite. In all mentioned above
papers devoted to the finiteness of lattice Hamiltonians, the case of dimension
three, that is, d =3, have been considered.

We note that in the continuous case, considered in [9,22], the "two-particle"
and "three-particle™ branches of the continuous spectrum are given by half-lines
and overlap. In lattice case, in contrast to the continuous case, the "two-particle"
and "three-particle” branches of the essential spectrum of the model operator A fill
finite-length segments and might not overlap. In the present paper we construct a
symmetric version of the Weinberg type equation for the eigenvectors of A and it
is used to prove the finiteness of the number of discrete eigenvalues located in the
below of the bottom of the three-particle branch of the essential spectrum of A.
Our method can also be used in the case where the essential spectrum of A has a
gapand d >3.

The organization of the present paper is as follows. Section 1 is an
introduction to the whole work. In Section 2, the operator matrix A is described as
a bounded self-adjoint operator in the direct sum of the zero-, one- and two-particle
subspaces of the Fock space and the main results are formulated. In Section 3, we
prove some auxiliary lemmas. In Section 4, we obtain a symmetric version of the
Weinberg equation for the eigenvectors of A. Section 5 is devoted to the proof of
the main results. At the end of this section provided an interesting example
satisfying all technical assumptions.

We remark that if the diagonal element A,, of A is the multiplication

operator, then this operator was studied in [3]. Here the existence of infinitely
many eigenvalues (resp. the finiteness of eigenvalues) below the bottom of the
essential spectrum of A was proved for the case where the associated Friedrichs
model has a threshold energy resonance (resp. a threshold eigenvalue). The
location of the essential spectrum of A were described in [11,13,20] and its
structure was studied in [14]. The existence of infinitely many negative eigenvalues
of A is proved for the case where the associated Friedrichs model have a zero
energy resonance and an asymptotics of the form U, |log|z| for the number of

eigenvalues of A lying below z <0, is obtained in [12]. The conditions for the
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infiniteness of the number of eigenvalues located inside (in the gap, in the below of
the bottom) of the essential spectrum of A is find.

Throughout the present paper we adopt the following conventions: Let C ,
R and Z be the set of all complex, real and integer numbers, respectively. We

denote by T¢ the d -dimensional torus (the first Brillouin zone, i.e., dual group of
Z%), the cube (—z,7z]° with appropriately identified sides equipped with its Haar

measure. The torus T will always be considered as an abelian group with respect
to the addition and multiplication by real numbers regarded as operations on the

three-dimensional space R® modulo (27Z)" . The spectrum, the essential spectrum,

the discrete and point spectrum of a bounded self-adjoint operator will be denoted
by o(), Ous()s Ogisc() and o, (), respectively. For each 6 >0, the notation

Us(py)={peTp-p,|<5} stands for a &-neighborhood of the point
Py eT?.

2. The model operator and main results

2.1. The model operator. Let d >3 and L,((T%)") be the Hilbert space of
square integrable (complex) functions defined on (T%)", n=12. Denote by H
the direct sum of spaces H,:=C, H,=L,(T%) and H,:=L,((T*)?), that is,
H=H,®H, ®H,. The spaces H,, H; and H, are called zero-, one- and two-
particle subspaces of the Fock space F(L,(T®)) over L,(T%), respectively, where

FILTN=CaLI)eL(T))e--aL(T))e-
Let us consider the model operator A acting in the Hilbert space H as

Ao An 0
A=Ay A Al
0 A’IZ A22
with the entries A;:H; > H;, i<j, i,j=012 defined by

Ao fo =afy, Ay fy :deV(S) fi(s)ds, (A f)(p) =u(p) f,(p),
(Ao f2)(P) = 1¥o(8) Fo(P.5)ds, Arp = Ay =V =V, (Ao )(P.0) = W(P.0) > (P.0)
Vi) (p,a) :Vl(q)_r.[dvl(s) f,(p,s)ds, (V, f,)(p,q) =V2(p)deV2 (s) f,(s,q)ds.

Here f,eH;, i=012; a is a fixed real number, u(), v(), v;(),
i=012 and w(,) are real-valued continuous functions on T and (T9)?,
respectively. The operator A; (i< j) denotes the adjoint to A; and
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(Ao Fo)(P) =V(P) Ty, (AL F1)(P.0) =Vo () Fy(P), f; e H;, i=01.
Under these assumptions the operator A is bounded and self-adjoint in H.
We remark that the operators A,, and A, (resp. A, and A,) are called

annihilation (resp. creation) operators. In the present paper we consider the case
where the number of annihilations and creations of the particles of the considering
system is equal to 1, thatis, A; =0 forall [i—j[>1.

Notice that [3] the operator A is associated to the Hamiltonian of a lattice
system describing three particles in interaction, without conservation of the number
of particles and the operator A,, is associated to a system of three quantum

particles on the d -dimensional lattice that interact via nonlocal pair potentials [2].

Set w(p,q)=w(p,q) and w,(p,q):=w(qg,p). To formulate the main
results of the paper we introduce the operators A, and A,, e =12 acting in the
Hilbert spaces H and H,, respectively, as

Ao A 0

*

A=A Ay Ayl A=AV, a=12
0 A, Ay

and the following families of bounded self-adjoint operators acting in H, ® H,

and H, as
a(p) ::(aoo(p) Qo1 } a,(p) ::(aoi)(p) Aoy J

ag a’(p) -V, Aoy a(p)
and a,(p)=a’(p)-v,, «=12, respectively, where
39o(P) fo =u(p) fy, apfi= IdVo(S) f,(s)ds,
T

@z (P )@ =w,(p.a) (@), (v, )@=V, (Q)TJdVa (s)fy(s)ds, @ =12.

We recall that the operator a(p) is called molecular-resonance model and

it is associated with the Hamiltonian of the system consisting of at most two
particles on the d -dimensional lattice, interacting via both a nonlocal potential,
and creation and annihilation operators.

In [14] it was shown that for any peT? the operator a(p) has at most

three eigenvalues.
Set

m:= min w(p,q), M = maxw(p,q).
p,qeT p,qud

The following theorem describes the location of the essential spectrum of
the operator A by the spectrum of the families a(p) and a,(p) of the generalized
Friedrichs models [20].
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Theorem 2.1. For the essential spectrum of A the following equality holds
Oess (A) =0\ [m, M ]v o= p:#d{o-disc(a( p)) o O-disc(az ( p))} (1)

Moreover, the set o (A) is a union of at most five bounded closed intervals.
The subsets o and [m,M] are called two-particle and three-particle
branches of the essential spectrum of A, respectively.
2.2. Main assumptions. Let T, € (0,27)° be a fixed element.
Assumption 2.2. For o, =01, a = f the function v, (") is T,-periodic and v, ()
satisfies the condition
v ©g(s)ds=o0. @

for any T, -periodic function g e L,(TY).

Assumption 2.3. (i) The function w(--) is T,-periodic on each variable p and q,
that is, w(p+T,,q) =wW(p,q+T,)=w(p,q) forall p,qeT?;

(i) The function w(,-) has the non-degenerate minimum at the points

(p,,q;) e(T?)?, i=1..,n, 1<n<co. All third order partial derivatives of the

functions u()) and w(-,) are continuous on T% and (T%)?, respectively.

Under the Assumption 2.2 and the part (i) of Assumption 2.3 the discrete
spectrum of a(p) coincides (see Lemma 3.1 below) with the union of discrete

spectra of the operators a,(p) and a,(p). It follows from the definition of the
operator a,(p), a =01 that its structure is simpler than that of a(p). Using the
Weyl theorem one can easily show that
Oess (A(P)) = Tss (89 (P)) = 05 (31 (P)) =[My (P). M1 (P)],
Tess (B2 (P)) =[M, (), M, (P)],
where the numbers m, (p) and M (p) are defined by

m, (p) = ggTipwa(p,q), M, (p)= rqugzwa(p,q), a=12.

For any fixed peT?, we define the analytic functions in the domains
C\[m,(p).M;(p)] and C\[m,(p),M;,(p)] by

2 2
Ao(Pi2) 1=U(p)‘z_$$’ M) :=1—de%
and
2
A,(p;2) :=1—Tjd$,

respectively. For « =012 the function A,(p;) is called the Fredholm
determinant associated with the operator a, (p) .
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From now on we always assume that o =0,1,2. Since the function w(,-)
has the non-degenerate minimum at the points (pi,qi)e(Td)Z, i=1...,n and the
function v, () is a continuouson T%, forany peT? the integral

i V2 (s)ds
7o W(p,s)—m
is positive and finite. Then the Lebesgue dominated convergence theorem vyields
A, (pi;m)=IlimA, (p;m), i=1..,n, and hence the function A, (;m) is a
pP—pi

continuous on T¢ .
Note that using the fact [2,3]

Oess (Aa) =0, U[ml M ]! O = Ud adisc(aa(p))
peT

together with Assumption 2.2 and part (i) of Assumption 2.3 the equality (2.1) can
be written as

O-ess(A) = O-ess(A)) o O-ess(Ai) o O-ess(Az) . (3)

It was shown in [2,3] that if minA, (p;m) <0, then o, N (-oo,m] =< . Assuming
peT

minA,, (p;m) <0, we introduce the following numbers

peT

E =min{o, N (—o,m]}, E) :=max{o, N (—oo,m]}.
The following theorem [2,3] describes the structure of the part of the

essential spectrum of A, located in (—oo,M].

Theorem 2.4. Let part (ii) of Assumption 2.3 be fulfilled.

(i) If minA, (p;m) =0, then
peT

(—o,M]Nno(A)=[mM];
(i) If minA_(p;m) <0 and maxA,(p;m) =0, then
peT? peT¢

(0, MIN o (A,) =[Efia M1, EG) <m;
(i) If maxA,(p;m) <0, then
per

(—~o,M]no . (A,)=[EX EXT1U[mM], EZ) <m.
ess a max max

min ?
We notice that if Assumptions 2.2 and 2.3 hold, then Theorem 2.4 together
with the equality (3) describes the structure of the part of the essential spectrum of
A located in (—oo,M].

If minA,(p;m)<0, then from E{%) E\?) eo, it follows that there exist positive
peT

integers n,,,k, and points {p,; ™, {0 }'inlch such that

{p eT?:A,(p;EX) =0}= {pal,...,pana };
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PeT® A, (MEE)=0f= {1 0u ).
Assumption 2.5. There exist positive numbers C, 6 and B €(0,2], j=1...,n,
such that
1AL (PESDECIP—py 1™, PeU,(py), i=Ln,,
and the inequality A, (p;E{)>0 holds forall peT* \{p,,,....0. }-

Assumption 2.6. There exist positive numbers K, p and y, €(0,2], i=1...k
such that

o

|A(BEG)EKIPp=a, ", peUs(ay), i=1..k,,
and the inequality A, (p;E{)) <0 holds forall peT?\{q,,,....0, }-

2.3. Statement of the main results. Here we formulate main results of the paper.
Theorem 2.7. Let part (i) of Assumption 2.3 be fulfilled.
(i) If Assumption 2.2 holds with =0 and the function v,(-) satisfies the

condition (2), then o ;. (A)) = o, (A).
(ii) If Assumption 2.2 holds with « =1 and in addition, the functions u(:), v(-) are
Ty -periodic, then oy (Ay,) o, (A).
Theorem 2.8. Let Assumptions 2.2 and 2.3 be fulfilled. Assume
(a.1) minA,(p;m)>0;
per
(.2) minA,(p;m) <0, maxA,(p;m)=0 and Assumption 2.5 holds;
peT peT
(a.3) maxA, (p;m) <0 and Assumptions 2.5, 2.6 hold.
peT

If for some i, j,k €{1,2,3} the conditions (1.i), (2. j) and (3.k ) hold, then
the operator matrix A has a finite number of discrete eigenvalues lying on the left
of m.

Remark 2.9. The class of functions u(), v4(), #=12 and w(,) satisfying the

conditions in Theorem 2.8 is nonempty (see Lemma 5.1).
3. Some auxiliary statements

The following lemma describes the relation between the eigenvalues of the
operators a(p) and a,(p), #=01.

Lemma 3.1. Let Assumption 2.2 and part (i) of Assumption 2.3 be fulfilled. For
any fixed peT? the number z(p)<C\[m,(p),M,(p)] is an eigenvalue of a(p)
if and only if z(p) is an eigenvalue of at least one of the operators a,(p) and

a,(p)-
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Proof. Let peT? be fixed. Suppose (f,,f,)eH, ®H, is an eigenvector of the
operator a(p) associated with the eigenvalue z(p)eC\[m,(p),M,(p)]. Then f,
and f; satisfy the following system of equations

(u(p)—z(p) o +TIdVo (s)f1(s)ds=0;
Vo(@) fo + (Wi (p,9) — 2(p)) f1 (@) -y (Q)devl (s)f1(s)ds=0. (4)

Since for any qeT? the relation w;(p,q)—z(p)=0 holds, from the second
equation of the system (4) for f, we have

C:ivi(q) —Vve(a) fy
f,(q) = —"
@)= .0-2m

()

where
Cy, = (9)fi(s)ds. ®)

Substituting the expression (5) for f; into the first equation of the system
(4) and the equality (6), we conclude that the system of equations (4) has a
nontrivial solution if and only if the system of equations

. Vo (S)Vy(S)ds _
Ao (p5z(p) fo +de w.(p,s) - 2(p) f, =

Vo (S)vi(s)ds .
— 2 f o+ A (p;z(p))C; =0
Loetois) 2y o u(piz(eNCy
has a nontrivial solution (fO,Cfl) eC?, i.e. if the condition

2
Ao(p:Z(p))Al(PiZ(p))‘(Iu%J -
TE WP, o) —

is satisfied.

By part (i) of Assumption 2.3 for any fixed peT? the function
(W, (p,) —2(p)) ™ eL,(T?) is T,-periodic. Applying Assumption 2.2 we obtain

Vo(S)vi(s)ds
7o wy (p,s) — 2(p)

If we set v,(q)=0 in the operator a(p), then a(p)=a,(p); in this case the
number z(p)eC\[m,(p),M,(p)] is an eigenvalue of a,(p) if and only if
Ao(p;z(p))=0. Similarly one can show that the  number
z(p) eC\[m,(p),M,(p)] is an eigenvalue of a,(p) if and only if A,(p;z(p))=0.
The lemma is proved.
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Lemma 3.2. Let minA,(p;m)>0. Then there exists a positive number C, such
peT

that the inequality A (p;z)>C, holds forall peT® and z<m.

Proof. Since for any peT? the function A, (p;-) is monotonically decreasing in
(—o0;m], we have
A, (p;z)= A, (p;m)=minA, (p;m)>0
peT

forall peT® and z<m. Now setting C, = minA, (p;m) we complete the proof
peT

of lemma.
Lemma 3.3. If Assumption 2.5 resp. 2.6 holds, then for any 6 >0 there exist the

positive numbers C, (o) and C,(5) such that

() A, (PES) 2C,(0) forall peT? \OU,(p,);

v =min
resp.
(ii) | A, (P;E2) 2 C,(5) forall peT® \J_C:Ug(qa,-).
Proof. Let Assumption 2.5 be fulfilled. Then the inequality A_(p;E(%))>0 holds
for any peT?\{p,,....p,0 }. Since for any 5>0 the set T° \;leUa(pm) is

compact and A, (5E!%)) is the positive continuous function on this set, there exists

min
the number C, () >0 such that the assertion (i) of lemma holds. Proof of assertion
(i) is similar.
Lemma 3.4. Let part (ii) of Assumption 2.3 be fulfilled. Then there exist positive
numbers C,,C,,C, and & such that the following inequalities hold

) Clp-pl+lg-aP)<w(p.g)-m<Cy(p-p [ +lg—g ) for all
(P.9) €U, (pi) xUs(q);

(i) w(p,q) —m=>C; for all (p,Q)eik:Jl(Ua(pi)xU(s(qi))-

Proof. By part (ii) of Assumption 2.3 the all third order partial derivatives of w(.,)
are continuous on (T%)? and it has the non-degenerate minimum at the points
(pi,qi)e(Td)z, i=1...,n. Then by the Hadamard lemma [23] there exists a ¢ -
neighborhood of the point (p;,q;) (T%)? such that the following decomposition
holds

w(p,q)=m+%(<w1‘”(p— B).p— Pi) + 20 (p— p).d— ) + W (- ). - )
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+ Y H(P(p,q)li[(p(“—p-(”)sk q® —qi)*,
k=1

Is+HI|=3

(p,a) EUa(pi)Xua(qi)
where i=1...,n and

d d d
Wl(i) ::(azw( pi!qi)J ’ Wz(i) ::[azw_( piiqi)j , Ws(i) ::[azw_( pi'Qi)]
S=(Sy,--:Sq )l =, 1g) | s|=s, +...+sd,sj,lj {0},...d}, j=1...d,

and H{ () with |s|+|lI|=3 are continuous functions in U, (p;)xU,(q;).
Therefore, there exist positive numbers C,,C,,C, such that (i) and (ii) hold true.

k=1

4.  The Weinberg type system of integral equations

In this section we derive an analogue of the Weinberg type system of
integral equations for the eigenvectors, corresponding to the eigenvalues of A,
lying on the left of m.

Let 7 (A) be the lower bound of the essential spectrum of A. It is clear
that A, (p,z)>0 forall peT? and z e (0,7, (A)); if maxA, (p;m) <0, then
peT

A,(p,z)<0 forall peT® and ze(EX),m). So sign(A,(p,z)) depends on the
location of ze(—oo,m)\o. (A) and does not depend on peT®. For
ze(—o,m)\ o (A) weset &, (z)=sign(A,(p,z)).

Let for any z € (—oo,m)\ o (A) the operator W(z) act in the Hilbert space H as
a 3x 3 operator matrix with entries W;;(z) :H; —H;, i, j=0,1,2 defined by

o L (9)g,(9)ds
Wyo(2)9o =(A+2—-2a)gy, Wy1(2)0, de —go(Z)Ao 5.2 ;
& (2v(p)9, .
Wy (2) =0, Wyo(2)go)(p) = —— 2B P80 vy 1y o,
’ e J&(2)Ao(p,2)
£, (2, (p) VoDV, (5)g, (s.)dsdt
12(Z == ;
P28 P = = (P D) 17+ YDy D) (WP — )
(W (z)g )(p q):_VO(q)(\Nlo(Z)go)(p) .
ZORIE wipq)-z
Was(D)gy)(p.0) =~ —— =20 Qa(P) Y86, (s)ds

(W(p,a) — 2){&,(2)A,(0,2) de V& (2)A(5,2) (W(s,0) - 2) |
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& (@), (@), (p) Vi (t)v, (s)g, (s, t)dsdt
(W5,(2)9,)(p.0) =
(W(P,a) — 2){& (DA, (P, 2) To7° &, (2)A, (8, 2) (W(p,t) — 2)
S (2)vi(q)v, (p) v (B)v,(s)g, (s, t)dsdt v (@) (Wi, (2)9,)(P) ,

+
(W(P, Q) - 2)y/&, (2)A,(q,2) T07¢ &, (2)A, (5, 2) (W(S, ) - 2) w(p,q) -z
where g;eH;, j=012.
We have the following lemma.

Lemma 4.1. Let Assumption 2.2 and part (i) of Assumption 2.3 be fulfilled. If
f eH is an eigenvector corresponding to the eigenvalue z e(—oo,m)\ o (A) of

A, then f satisfies the Weinberg equation W(z)f = f .
Proof. Let ze(—oo,m)\o(A) be an eigenvalue of the operator A and
f =(f,, f,, f,) eH be the corresponding eigenvector. Then f,, f, and f, satisfy
the system of equations
(Ao —2) fo + ATy
(Ao fo)(P) + (A — 2) f)(P) + (AL F,)(P)=0; (7
(A f1)(P,0) + (A2, = 2) F,)(p, @) — (Vo F) (P, @) — (V, f,) (P, q) = 0.

Since z <m, from the third equation of the system (4.1) for f, we have

_ i@y (p) + Vo (P)wo (@) Vo(a) fi(p)
R0 w(p,q) -z w(p,a) -2 ©
where
w1(P) =dev1(s) f,(p,s)ds, ©9)
w,(p) =TIdv1(s) f,(s, p)ds. (10)

Substituting the expression (8) for f, into the second equation of the
system (7) and the equalities (9), (10) and using Assumptions 2.2, 2.3, we obtain
fo=QA+z—-a)f,— [v(s)f,(s)ds;
Td

Ao(P.2) Fu () = ~v(p) o — vy (p) [ YW 2()s (11)
T w(p,s) -2
A, (p, 2y, (p) = vz(p)IM,
W(p,s) 2
AL (P 2o (P) =V o(pnM vy(p) [ Y2 ()ds
W(s, p) 2 W, p) -2

It is clear that the inequality &, (z)A,(p,z) >0 holds for all z e (—o,m)\ o (A)

and peT?. Therefore, the system of equations (11) has a nontrivial solution if and
only if the following system of equations
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fo =Woo(2) fo +Woy(2) 15
_ So(2)v,(P) Vo (S)y,(s)ds .

H ) ) Ao, 0+ VE @A, 5, D) W(p.5) )

& (2)v,(p) vy (S)y,(s)ds
Va(@)A(p2) 1 JE,(2)A, (5,2) (W(p.S) - 2)

& (2)vo(p) v, (8) fy(s)ds
VE@D)A,(P,2) 1 & (2)Ag (5,2) (W(s, p) - 2)

L 5(2)vi(p) Vo (S)y(s)ds
V& @A, (p,2) 7 & (2)A (s, 2) (W(s, p) — 2)
has a nontrivial solution.
Substituting the last expressions for f, and Yy, B=12 into the formula

(8) and using the equalities (9), (10), we obtain the Weinberg equation W(z)f = f .
Set
E. =mnEY E_=minEY, Y:=[r.(A-1Lm]\oc.(A).

wi(p) =

w,o(p)=-

min ?
Lemma 4.2. Let assumptions in Theorem 2.8 be fulfilled. Then the operator W (z)
is compact for z €2 and the operator-valued function W(z) is continuous in the

uniform operator topology for ze>..
Proof. We will prove the statement of the lemma for the case maxA,(p;m)<0
peT

with
O _F@ _£@
Emin - Emin - Emin ’
Other cases can be proven in a similar.
In this case we have

2=[En ~LE . ]1UIE . Ml E. <m.
Let Assumptions 2.5 and 2.6 be fulfilled. For ze(—oo,m)\ o, (A) denote by
W(p,q,s,t;z) the kernel of the operator W,,(z).
We have the following inequalities
w(p,q)—z>m-E,;, >0 forall p,qeT?, z<E,;

O _@ _gO
EQ =E@ =EX

w(p,q)—-z=(m-E.,)/2>0 forall p,q eT?, ze[E . ;(M+E)/2].
Then by Assumptions 2.5, 2.6 and Lemma 3.3 the function |W(-,;z)| can be
estimated by

2 xs(t—pai) @ 2s(P—Poi) < xs(P—Pu)
(o) (1+ZZ§ ! 1+ s+ .
{ lt-py 1722 N Sl p—poi o'? Slp—py 142
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+{1+§ Z5(@ = Pai) }[H% Z5(8— Pui) J

2l py 1212 ils—py |2

for z<E... andby

c{(u%ﬂfﬂ(t_qﬁ)]{“% Zp (P — i) +§ Zp(P—0y) J

min

idlt-pa 272 idlp-agi 7% iElp—ay "2
kzzm—%oI K, Xp(s— )
+ 1+ =2 1+ -2~
[ idla-gu P22 ) Sls-ay e
for ze[E,,..(m+E.,)/2], where y,(:) isthe characteristic function of U (0).
Since &,(z)=-1 for any ze(E,,,m) and maxA,(p;m)<0, we have
per

the inequality max(&,(z)A,(p;m))>0 for any z e (E,,,m) . Therefore, Lemmas
per

3.2 and 3.4 imply that the function |W(-,-,-,;2)| can be estimated by

Zs(P—P;) xs (A1) Zs(P=P) st =) . xs(s—p)xs(d—0;)
1+ 2 7 |1+ 2 2 2 2

lp—pi | +ld—q;] [p—p | +]t—q;] Is—pi|"+ld—q;
for ze[(m+E,,)/2,m].

Using elementary inequality
1 1

(p™)? +..+ (p)? - (P)? +(p®)? +(p9)?’
one can see that the latter three majorant functions are square integrable on (T¢)*
and hence the operator W,,(z) is Hilbert Schmidt for any
Ze(—oo, Emin]U[Emax’m]'

A similar argument shows that the operators W,,(z) and W,,(z) are also
Hilbert Schmidt forany ze>..
For any ze(—o,m)\o,

ess

n
C,>

i=1l

(PP +(p@)? + (p®)? 20,

(A) the kernel function of W; (2), i,j=L2 is

continuous on its domain. Therefore the continuity of the operator-valued functions
W;(2), i, j=12 in the uniform operator topology for ze2. follows from

Lebesgue's dominated convergence theorem.
Since for all z 2. the operators Wy,(z), W,,(z) , W;,(z) and W,,(z) are of

rank 1 and continuous in the uniform operator topology for z <>  one concludes
that W(z) is compact for ze and the operator-valued function W(z) is

continuous in the uniform operator topology for ze 2.
5. Proof of the main results

In this section we prove Theorems 2.7 and 2.8.
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Proof of Theorem 2.7. First we prove part (ii). Let o =1. If z; eC\ o, (A,,) is
an eigenvalue of the operator A,, and f, € H, is the corresponding eigenfunction,
then f, satisfies the equation
(W(p,a) = 2) F2(p,q) = Vi.(a) Jvi(8) T (P, S)ds =V, (P) [V, (5) f>(s5,q)ds=0.  (12)
T T
Since z; #[m,M], from the equation (5.1) for f, we have
£ (pug) = @V (R) +va(PIyo(@) 13
VV(pvq)'_ Zl

where the function y, () and y,(-) are defined by (9) and (10), respectively.

Substituting the expression (13) for f, into the equalities (9) and (10), we

obtain
() =y (p) | 4N,
¢ W(p,s) -2z
(=, () 5 2. QUAQL
w(s, p) -

Since z, ¢ o (Ay,) the inequality A, (p,z)=0, a:1,2 holds for all peT?.
From the last two equations we have

v, (P) | Vi (), (8)ds .
A (p,zy) e W(p,s)—2z;

vi(P) ¢ Vo (S)y(8)ds
Ay(p.z)Te WS, p)—2,
For a=12 the functions v, (-) and w,(.q), qeT® are T,-periodic and hence

A (P, 2y,

Ay (Pi 2y,

wi(p) =

w,(p)=

the function () is also T,-periodic. Therefore, for any fixed peT? the
function f,(p,-) defined by (13), is T,-periodic. Hence this function satisfies the
condition (2.2), that is, A,f, =0. So the number z, € o4, (A,,) is an eigenvalue
of A and associated eigenvector has form f =(0,0,f,)eH . Therefore,
Ogisc(Po2) © Op (A).

Now we prove part (i). Let =0. If z, € o4.(A)) and 9=(9,,9;,9,)eH
is the eigenfunction associated with the discrete eigenvalue z, of A, then similar
analysis shows that Vﬂg2 =0, p=12, which guarantee that the number

Z, € o4.(A)) is an eigenvalue of A with the same eigenvector ge H , that is,
Cisc(Ay) =0, (A) . Theorem 2.7 is proved.

Proof of Theorem 2.8. We prove the finiteness of the number of discrete
eigenvalues located on the left of m for the case, when maxA ,(p;m)<0. Other
per
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cases can be proven similarly. Suppose that the operator A has an infinite number
of discrete eigenvalues (Ek) < (Eqex»M) . Then three cases are possible:

(i) imE, =m;
K—>o0

keN

(i) IME, =By ;
(i) there exist (E;)_.(E¢ )y =(Ec )y such that limE, =m and

limE, =E,, .

k—o0

Let us consider the case (iii). For each ke N we denote by ¢, eH and
@, €H the orthonormalized eigenvectors corresponding to the eigenvalues E,
and E,, respectively. Then it follows from Lemma 4.1 that ¢, =W (E, )¢, and
o =W(E,)p, for any ke N. By virtue of Lemma 4.2 the operators W (E,.,),
W(m) are compact and ||W(z)-W(E,)|—0 and [|[W(z)-W(m)|—>0 as
z—>E,, +0and z—m-0, respectively. Therefore,
1| g [IHIW (E )i 1< W (Ey ) =W (B )y [l +I1W (B ) 1= 05

1l o IHIW (B Il W (Ey) =W (m)gy ||+ W (M)gyy [0

as k —oo. This contradiction implies that the points z=E,,, and z=m can not
be limit points of the set of discrete eigenvalues of A belonging to the interval
(Epex»m) . Similar arguments show that other edges of > are also cannot be
accumulation point for the set of discrete eigenvalues of A smaller than m.

The following example shows that the class of functions u(), v,(-),
a =12 and w(-,) satisfying the conditions of Theorem 2.8 is nonempty.
Lemma5.1. Let

d . d .
0o (p) = 2Cy; COS(2 p®™), ¥, (p) = ¢ cos(p™), v (p):= /1, 9,(p), f=01

u(P)=L W(p.) = 5(p) + (@), £(p) = £(-cos(2p")),

where iy >0; Chis £=01, i=1...,d are arbitrary real numbers.

Set
2 -1 2 -1
4O 3:(1 ' (s)dsJ 4O ::[I ' (s)ds] .
Td “

£(s) 146+ £(S)
Then the functions u(-), v,(-), =12 and w() are satisfy Assumptions

2.2,2.3,2.5, 2.6. Moreover,
(i) if 0< 1, <pf, then maxA,(p;m)>0;
peT
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(i) if 48 < p1, <, then minA, (p;m) <0 and maxa,, (p;m)>0;
peT per
(iii) if g, > P, then maxA , (p;m)<0.
per

Proof. First we recall that for T, = (,...,z) eT¢ the function w(.) is T,-periodic

on each variable p and q. Let the function gelL,(T") as in Assumption 2.2.
Then we have

[ (8)9(8)ds = [vy(+ To)g(s +To)ds = v, (s)g(s)ds,

T T T

which yields the equality (2.2), that is, Assumption 2.2 holds with =0 and
p=1.
We introduce the following subset of T :
A={p=(p®?,...p"eT?: p® {0,7}, k=1,...,d}.
From the definition of w(.,) it follows that this function has zero non-
degenerate minimum at the points of AxA and it satisfy all conditions of

Assumption 2.3.
The assertions (i)-(iii) directly follows from the definition of the numbers

1 and p.
Let 1 <, <u®. We prove that the function A (,E!2)) has the non-

degenerate minimum at the points of A . Simple calculations show that for any
fixed p'e A the inequality A, (p,E!)>A_ (p',EX)) holds forall peT?\A.

v =min v —=min
Since E!%) e(—x0,0), it is clear that the function A_(,E{%)) is twice

min v =min

continuously differentiable in T% . Moreover, from the equalities

2 (@) 2
a Aalfp’ Elinm) :4#0[ COS(Zp(k)) J- Va (S)dS -
ap®op™ 1 (e(p) +&(s) —E))

~2
8y, (sin@p®))? | Va(S)dS K=l..d:

1 (e(p) +&(s) —EL)®

2 (@) ~2
TP _ g, sin2p®)sin(2p®) | —— e g 1o 0
opWep® 1 (s(p) +£(s) ~ E)
we get
o°A, (p,EX) ’A,(p EX)
GS(E)pap(kTm) 0 aS(%Jap(lr)mn) =0, k=l kl=1..d
forany p'eA.

Using these facts, one may verify that the matrix of the second order partial
derivatives of the function A (: E() at the points of A are positive definite.

» =min

Thus the function A, (- E{*)) has the non-degenerate minimum at the points of A .

v =min
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Since the number of points of A is equal to 2% for convenience we numerate the
points of A as p;,...,p, . Then the equality A, (P, E)=0, i=1,...2° implies

min
that there exist the numbers 6 >0 and C >0 such that
1A, (P ESDECIP-p % peUs(p), i=1..2,
that is, Assumption 2.5 holds with n, =2, p,, = p; and 8, =2 for i=1,...2°.
In the case x, > 1 one can similarly show that there exist the numbers

[24

p >0 and K >0 such that

1A, (P.E&) =K p—p, [*, peUs(py), i=1..2%,
that is, Assumption 2.6 holds with k, =2, g, = p; and y,, =2 for j=1,..2".
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Fok fazasinda Hamiltonianin maxsusi adadlari sayimin mahdudlugu
Tulkin Rasulov
XULASO

D-olgiilii gafosdo hissaciklorin saymin saxlanilmadigi halda 3 hissacikli qarsiligh
tosiri tosvir edon, Hamiltonian ilo bagli olan operator modelina baxilir. Biz A
operatorunun oasas spektrinin doqiq yerlosmosi vo strukturu {igiin {i¢ limumilosdirilmis
Fridrix modelini  veririk. Biz diskret spektrin sonlulugu tg¢iin kafi sort deyil, A
operatorunun maxsusi vektorlari {iglin Vaynberq tonliyinin simmetrik verisyasini qururug.

Acar sozlor: Hamiltonian, Fock fazasi, annigilyasiya vo generasiya operator,
imumilosdirilmis Fridrix modeli, asas vo diskret spektr.

Orpann4eHHOCTh KOJINYECTBA COOCTBEHHBIX 3HAYEHUH
I'amuibToHHMa B npocTpancTBe Doka

Tyakun X. Pacynos

PE3IOME

PaccmarpuBaeTcst Moaen omepaTopa CBA3aHHOTO ¢ 'aMHJIBTOHHAHOM CHCTEMBI
TpeX YAaCTHIl, OMHCHIBAIOIINX B3aWMOJCHCTBHE, 0e3 COXpaHCeHHs dYucia yacTui] Ha d-
MepHO# pemeTke. Mbl TOYHO OIMCBHIBAEM PACIOJOXKEHHE M CTPYKTYpa CYIIECTBEHHOT'O
CIeKTpa A TI0 crekTpaMm Tpex Mojened o0000menHsx Ppuapuxcom. Mpl nomydaem
CHMMETPHYECKYIO BEpCHIO ypaBHeHHs BaiinOepra 1t cOOCTBEHHBIX BEKTOPOB A, a He
JIOCTaTOYHBIE YCIIOBHUS JUIsl KOHEUHOCTH JTUCKPETHOTO CIICKTPa.

KnatoueBble caoBa: [ammibroHman, mnpoctpaHcTBo (Poka, aHHMTWISIOUS H
oTiepaTophl TeHepanyy, 0000ueHHas Moess Ppuapuxca, CylmeCTBEHHbBIC U IUCKPETHBIC
CIEKTPHI.
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